Preparation of 4-Alkylated Derivatives of Apopinene

By DANIEL JOULAIN* and CLAUDE MOREAU

(Laboratoire de Synthèse Organique, Centre Universitaire du Mans, route de Laval, 72-Le Mans, France)

and MICHEL PFAU

(Laboratoire de Recherches Organique de l'Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, Paris 5°, France)

Summary Coupling of Grignard reagents with bromoapopinene, prepared by treatment of apopinene with NBS, gives 4-alkylated derivatives of apopinene in high yields; of particular interest is the convenient preparation of trans- δ -pinene. WE report here a convenient stereospecific synthesis of new *trans*-4-substituted derivatives (2) of apopinene, possible key intermediates in syntheses of polycycles of type (1); these derivatives are also of potential interest for photochemical studies.¹

J.C.S. CHEM. COMM., 1972

trans-Bromoapopinene (4), required as starting material in these syntheses, was prepared stereospecifically by treatment of apopinene (3) with N-bromosuccinimide (NBS) in almost quantitative yield based upon recovered apopinene (b.p. 80-81° at 20 mmHg).

The trans-configuration⁺ of compound (4) results from a stereoselective attack by the brominating agent on the opposite side of the gem-dimethyl bridge,³ and is supported by its n.m.r. spectrum, which shows a 0.3 p.p.m. deshielding of 7 β -H (d, ²J 9 Hz),⁴ relative to the equivalent proton in

- † Stereochemistry defined relative to the gem-dimethyl bridge.
- [†] Satisfactory analytical and spectral data were obtained.
- § Yield based on purified product.
- ¶ Yield calculated from g.l.c. analysis.
- ¹ M. Pfau, Flavour Industry, 1972, 3, 89.
- ² H. E. Eschinazi and H. Pines, J. Org. Chem., 1959, 24, 1369.
 ³ J. Roux and R. Lalande, Compt. rend., 1971, 273 C, 997 and references therein.
 ⁴ R. J. Abraham, F. H. Bottom, M. A. Cooper, J. R. Salmon, and D. Whittaker, Org. Magnetic Resonance, 1969, 1, 51.
 ⁵ M. Tamura and J. Kochi, Synthesis, 1971, 303.
 ⁶ C. Moreau, F. Bougesca, and J. M. Coopit. Tetrahedron Letters, 1970, 3527.

 ⁶ C. Moreau, F. Rouessac, and J. M. Conia, *Tetrahedron Letters*, 1970, 3527.
 ⁷ G. Zweifel and C. C. Whitney, *J. Org. Chem.*, 1966, 31, 4178 and references therein; see also Y. Bessiere-Chretien and J. P. Bras, Compt. rend., 1969, 268 C, 2221.

apopinene, owing to through-space interaction with bromine.

Coupling of Grignard reagents with the allylic bromide (4), catalysed by Li₂CuCl₄ in THF solution at 0°,⁵ afforded compounds of type (2) in high yield. [‡] This method provides a much more convenient synthesis of pure trans-δ-pinene (3; R=Me) than those proposed before.⁷.

(Received, 14th July 1972; Com. 1224.)